Hysol GR710F | Black Epoxy Mold Compound

Harmonization Code : 3907.30.00.40 |   Epoxy Mold Compounds containing by weight more than 70 % silicon dioxide
Main features
  • Halogen free
  • Low moisture absorption
  • High reliability

Product Description

Hysol GR710F is a halogen free, black, spherical silica filled (75um cut size) semiconductor grade epoxy molding compound. It has high adhesion, low moisture absoprtion (0.2%) and a Tg of ~115°C. 

Hysol GR710F is a technologically advanced, halogen free epoxy molding compound with good electrical performance, designed for high reliability applications with low moisture absorption requirements. Typical packages can be  T0, SOIC16, TSOP and SSOP packages. It delivers outstanding performance and ease of use and it meets UL 94 V-0 flammability at 1/8 inch thickness. This product is a substitute for Hysol GR825-73B.

Product Family
GR710F  
Pellet
16 mm
7.3 gr
10 kg

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Shipping in 8 - 12 weeks Shipping in 8 - 12 weeks Shipping in 8 - 12 weeks

Technical Specifications

General Properties
Filler Content 88 %
Specific Gravity
Specific Gravity
Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume.

For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless.
1.98
Shelf Life
Shelf Life
Shelf life is the amount of time after manufacturing that a product is guaranteed to retain its properties.

It differs vastly per product and it is based on temperature and storage conditions.

The properties can be guaranteed for the temperature and time range indicated on the TDS since those are the ones tested to be the best for the product.
Shelf Life @ 5°C 183 days
Physical Properties
Spiral Flow @ 175°C 93 cm
Chemical Properties
Ionic Content
Chloride (Cl-)
Chloride (Cl-)
The amount of Chloride (Cl-) ion extracted from the product in parts per million (ppm)
9 ppm
Sodium (Na+)
Sodium (Na+)
The amount of Sodium (Na+) ion extracted from the product in parts per million (ppm)
4 ppm
Moisture absorption 0.2 %
Mechanical Properties
Flexural Modulus
Flexural Modulus @ 25°C 24300 N/mm2
Flexural Strength
Flexural Strength @ 25°C
Flexural Strength @ 25°C
Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. This is the flexural strength tested at Room Temperature, 25°C
142 N/mm2
Water Extract Data
Water Extract Data
Water Extract Data, 20hrs water boil
pH of extract 5
Electrical Properties
Volume Resistivity
Volume Resistivity
Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface.
5.0x1016 Ohms⋅cm
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
9 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
37 ppm/°C
Gel Time
Gel Time
Gel time is the time it takes for a material to reach such a high viscosity (gel like) that it is no longer workable.

It is usually measured for different temperature conditions and even though it does not refer to full cure it is advisable to never move or manipulate the material after it reached its gel time since it can lose its desired end properties.
Gel Time @ 175°C / 347°F 31 s
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
115 °C
Thermal Conductivity
Thermal Conductivity
Thermal conductivity describes the ability of a material to conduct heat. It is required by power packages in order to dissipate heat and maintain stable electrical performance.

Thermal conductivity units are [W/(m K)] in the SI system and [Btu/(hr ft °F)] in the Imperial system.
0.86 W/m.K
Curing Conditions
Curing Schedule
Curing Schedule
Curing schedule is the time and temperature required for a mixed material to fully cure. While this applies to materials that cure with heat, there are also other materials that can be cured with UV.

Even though some materials can cure on ambient temperatures, others will require elevated temperature conditions to properly cure.

There are various curing schedules depending on the material type and application. For heat curing, the most common ones are Snap cure, Low temperature cure, Step cure and Staged cure.

Recommended cure type, schedule, time and temperature can always be found on the Technical data sheets.
Curing Time @ 175°C / 347°F 90 - 150 s
Mold Temperature 170 - 185 °C
Preheat Temperature 70 - 90 °C
Post Mold Cure
Post Mold Cure @ 175°C / 347°F 4 - 8 hrs
Transfer Pressure 40 - 85 kg/cm2
Transfer Time 7 - 15 s

Additional Information