LINQBOND LB-FL501 | Fill encapsulant

Harmonization Code : 3907.30.00.90 |   Polyacetals, other polyethers and epoxide resins, in primary forms; polycarbonates, alkyd resins, polyallyl esters and other polyesters, in primary forms : Epoxide resins : Other
Main features
  • Fill
  • Low CTE a1: 23 ppm/°C
  • Easily flow, low viscosity

Product Description

LINQBOND LB-FL501 is a high-performance, one-component fill epoxy encapsulant specifically designed for demanding semiconductor applications. Formulated with a low thermal expansion coefficient (CTE1: 23.2 ppm/°C, CTE2: 76.6 ppm/°C), LB-FL501 provides exceptional thermal stability and protects sensitive components from mechanical stress and environmental factors. Its excellent operability combined with a viscosity of 37,000 cps at 25°C ensures easy handling and precise dispensing, while its strong adhesion and chemical resistance contribute to the overall reliability of electronic assemblies.

LINQBOND LB-FL501 epoxy encapsulant offers superior resistance to a wide range of chemicals and solvents, safeguarding components from degradation. Additionally, LB-FL501 exhibits outstanding heat shock resistance, making it suitable for applications that experience rapid temperature fluctuations. Typical applications include IC memory cards, chip carriers, hybrid circuits, chip-on-board, multi-chip modules, BGA, and pin grid arrays. It comes in 5, 10, 30 and 50cc syringes.

Cure Schedule

  • 30 minutes @ 135°C plus 90 minutes @ 175°C
Product Family
LB-FL501  
30cc Syringe

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Shipping in 6 - 8 weeks Shipping in 6 - 8 weeks Shipping in 6 - 8 weeks

Technical Specifications

General Properties
Density (g) 1.8 g/cm3
Work life @25°C
Work life @25°C
Work life is the amount of time we have to work with a material until it is no longer able to be easily worked and applied on a substrate.

It is based on the change in viscosity and it can rely on the application requirements.
72 hours
Shelf Life
Shelf Life
Shelf life is the amount of time after manufacturing that a product is guaranteed to retain its properties.

It differs vastly per product and it is based on temperature and storage conditions.

The properties can be guaranteed for the temperature and time range indicated on the TDS since those are the ones tested to be the best for the product.
Shelf Life @ -40°C 183 days
Physical Properties
Viscosity
Viscosity
Viscosity is a measurement of a fluid’s resistance to flow.

Viscosity is commonly measured in centiPoise (cP). One cP is defined as
the viscosity of water and all other viscosities are derived from this base. MPa is another common unit with a 1:1 conversion to cP.

A product like honey would have a much higher viscosity -around 10,000 cPs-
compared to water. As a result, honey would flow much slower out of a tipped glass than
water would.

The viscosity of a material can be decreased with an increase in temperature in
order to better suit an application
37,000 mPa.s
Chemical Properties
Ionic Content
Chloride (Cl-)
Chloride (Cl-)
The amount of Chloride (Cl-) ion extracted from the product in parts per million (ppm)
5 ppm
Sodium (Na+)
Sodium (Na+)
The amount of Sodium (Na+) ion extracted from the product in parts per million (ppm)
5 ppm
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
23 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
76 ppm/°C
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
181 °C