LINQBOND SMA3602 | SMT Chipbonder
Main features
- solvent-free
- low stress
- low water absorption
Product Description
LINQBOND SMA3602 is a one-component epoxy developed for chip bonding. This product offers medium viscosity, high thixotropy, and fast curing at low temperatures. It is suitable for screen printing and dispensing applications. The product forms strong cured shapes without stringing or slumping, even at high-speed dispensing and with very small dots. The hardened surface of this product does not exhibit surface oiliness.
Once cured, LINQBOND SMA3602 offers excellent adhesive strength, electrical insulation properties, and superior chemical and solvent resistance. Stable adhesive strength can be achieved with various SMT (Surface-Mount Technology) applications. This product is well-suited for electronic device encapsulation and chip bonding.
Technical Specifications
General Properties | |||||||
Appearance Appearance Appearance at room temperature. | Red liquid | ||||||
Pot Life Pot Life Pot life is the amount of time it takes for the viscosity of a material to double (or quadruple for lower viscosity materials) in room temperature after a material is mixed. It is closely related to work life but it is not application dependent, less precise and more of a general indication of how fast a system is going to cure. | 168 (7days) hours | ||||||
Specific Gravity Specific Gravity Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume. For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless. | 1.35 | ||||||
| |||||||
Physical Properties | |||||||
Thixotropic index Thixotropic index Thixotropic Index is a ratio of a material s viscosity at two different speeds in Ambient temperature, generally different by a factor of ten. A thixotropic material s viscosity will decrease as agitation or pressure is increased. It indicates the capability of a material to hold its shape. Mayonnaise is a great example of this. It holds its shape very well, but when a shear stress is applied, the material easily spreads. It helps in choosing a material in accordance to the application, dispense method and viscosity of a material. | >2.5 | ||||||
Viscosity Viscosity Viscosity is a measurement of a fluid’s resistance to flow. Viscosity is commonly measured in centiPoise (cP). One cP is defined as the viscosity of water and all other viscosities are derived from this base. MPa is another common unit with a 1:1 conversion to cP. A product like honey would have a much higher viscosity -around 10,000 cPs- compared to water. As a result, honey would flow much slower out of a tipped glass than water would. The viscosity of a material can be decreased with an increase in temperature in order to better suit an application | 70000 - 120000 mPa.s | ||||||
Chemical Properties | |||||||
Water Absorption | 0.23 % | ||||||
Electrical Properties | |||||||
| |||||||
Dielectric Strength Dielectric Strength Dielectric strength is measured in kV per mm and is calculated by the Breakdown voltage divided by the thickness of the tested material. Those two properties go hand in hand and while Breakdown voltage is always thickness dependent, dielectric strength is a general material property. As an example, the dielectric strength of Polyimide is 236 kV/mm. If we place 1mm of Polyimide between two electrodes, it will act as an insulator until the voltage between the electrodes reaches 236 kV. At this point it will start acting as a good conductor, causing sparks, potential punctures and current flow. | 22 kV/mm | ||||||
Surface Resistivity | 4.5 × 10(E14) Ohms/sq | ||||||
Volume Resistivity Volume Resistivity Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface. | 4.5×10(E15) Ohms⋅cm | ||||||
Mechanical Properties | |||||||
| |||||||
| |||||||
Thermal Properties | |||||||
| |||||||
Degradation temperature Degradation temperature The temperature at which the materials start losing their properties | 337 °C | ||||||
Glass Transition Temperature (Tg) Glass Transition Temperature (Tg) The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding. The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs. | 125 °C | ||||||
Specific Heat Capacity Specific Heat Capacity Specific heat capacity is the amount of heat energy required to raise the temperature of a substance per unit of mass. The specific heat capacity of a material is a physical property. It is also an example of an extensive property since its value is proportional to the size of the system being examined. | 4.56 J/(g⋅°C) | ||||||
Thermal Conductivity Thermal Conductivity Thermal conductivity describes the ability of a material to conduct heat. It is required by power packages in order to dissipate heat and maintain stable electrical performance. Thermal conductivity units are [W/(m K)] in the SI system and [Btu/(hr ft °F)] in the Imperial system. | 0.3 W/m.K |