LOCTITE ABLESTIK 933-1
Harmonization Code : 3907.30.00.90 | Polyacetals, other polyethers and epoxide resins, in primary forms; polycarbonates, alkyd resins, polyallyl esters and other polyesters, in primary forms : Epoxide resins : Other
Main features
- Improved work life
- Electrically insulating
- Low CTE
Product Description
LOCTITE ABLESTIK 933-1 black epoxy encapsulant is designed for encapsulating microelectronic chips. The low coefficient of thermal expansion minimizes stress effects on components and wiring during thermal shock tests.
LOCTITE ABLESTIK 933-1 is an electrically insulating encapsulant that exhibits a longer work life and a lower moisture sensitivity than the anhydride-cured system.
Cure Schedule
- 2 hours @ 125°C
Technical Specifications
General Properties | |||||||
Density (g) | 2 g/cm3 | ||||||
Specific Gravity Specific Gravity Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume. For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless. | 2.1 | ||||||
Work life @25°C Work life @25°C Work life is the amount of time we have to work with a material until it is no longer able to be easily worked and applied on a substrate. It is based on the change in viscosity and it can rely on the application requirements. | 1464 hours | ||||||
Physical Properties | |||||||
Viscosity Viscosity Viscosity is a measurement of a fluid’s resistance to flow. Viscosity is commonly measured in centiPoise (cP). One cP is defined as the viscosity of water and all other viscosities are derived from this base. MPa is another common unit with a 1:1 conversion to cP. A product like honey would have a much higher viscosity -around 10,000 cPs- compared to water. As a result, honey would flow much slower out of a tipped glass than water would. The viscosity of a material can be decreased with an increase in temperature in order to better suit an application | 360,500 mPa.s | ||||||
Chemical Properties | |||||||
| |||||||
Water Absorption | 0.11 % | ||||||
Mechanical Properties | |||||||
| |||||||
Thermal Properties | |||||||
| |||||||
Glass Transition Temperature (Tg) Glass Transition Temperature (Tg) The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding. The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs. | 124 °C | ||||||
Thermal Conductivity Thermal Conductivity Thermal conductivity describes the ability of a material to conduct heat. It is required by power packages in order to dissipate heat and maintain stable electrical performance. Thermal conductivity units are [W/(m K)] in the SI system and [Btu/(hr ft °F)] in the Imperial system. | 1 W/m.K |