LOCTITE ABLESTIK ECF 564AHF

Harmonization Code : 3920.99.28.90 |   Other plates, sheets, film, foil and strip, of plastics, non-cellular and not reinforced, laminated, supported or similarly combined with other materials ; Of other plastics ; Other; Other
Main features
  • High flow version of 564A
  • Excellent thermal conductivity
  • Passes Mil 5011 and NASA outgassing

Product Description

LOCTITE ABLESTIK ECF 564AHF adhesive film is designed for use in hybrid packages where outgassing and ionic contamination must be kept to a minimum. This isotropically electrically conductive adhesive film has excellent thermal conductivity and comes with a glass fabric carrier.

LOCTITE ABLESTIK ECF 564AHF is the High flow version of ECF 564A and meets the NASA outgassing requirements and those of MIL-STD883C, Method 5011

 

Cure Schedule

  • 2 hours @ 150°C
Product Family
ECF564AHF  
6 x 6 inch sheet

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Shipping in 8 - 12 weeks Shipping in 8 - 12 weeks Shipping in 8 - 12 weeks

Technical Specifications

General Properties
Outgassing
CVCM
CVCM
Collected Volatile Condensable Materials
0.01 %
TML
TML
Total Mass Loss
0.3 %
Electrical Properties
Volume Resistivity
Volume Resistivity
Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface.
4.0x10-4 Ohms⋅cm
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
80 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
330 ppm/°C
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
122 °C
Thermal Conductivity
Thermal Conductivity
Thermal conductivity describes the ability of a material to conduct heat. It is required by power packages in order to dissipate heat and maintain stable electrical performance.

Thermal conductivity units are [W/(m K)] in the SI system and [Btu/(hr ft °F)] in the Imperial system.
3 W/m.K