LOCTITE ECCOBOND FP0087
Harmonization Code : 3907.30.00.90 | Polyacetals, other polyethers and epoxide resins, in primary forms; polycarbonates, alkyd resins, polyallyl esters and other polyesters, in primary forms : Epoxide resins : Other
Main features
- High Tg
- Excellent moisture resistance
- Excellent thermal shock resistance
Product Description
LOCTITE ECCOBOND FP0087 is a single component, epoxy based encapsulant for potting stress-sensitive devices. It yields best results when used to encapsulate a device enclosed in a cavity or potting ring, which restricts the flow of the material. This material is a great encapsulant for potting stress-sensitive devices.
LOCTITE ECCOBOND FP0087 is a single component potting product with low thermal expansion. This product therefore provides excellent thermal shock resistance and reduced warpage and cracking. The unique combination of low stress and excellent resistance to moisture and process fluids provide excellent results in severe automotive environments.
Cure Schedule
- 1 hour @ 125°C plus 1 hour @ 180°C
Technical Specifications
General Properties | |||||||||
Filler Content | 76 % | ||||||||
Pot Life Pot Life Pot life is the amount of time it takes for the viscosity of a material to double (or quadruple for lower viscosity materials) in room temperature after a material is mixed. It is closely related to work life but it is not application dependent, less precise and more of a general indication of how fast a system is going to cure. | 24 hours | ||||||||
Specific Gravity Specific Gravity Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume. For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless. | 1.78 | ||||||||
| |||||||||
Physical Properties | |||||||||
Viscosity Viscosity Viscosity is a measurement of a fluid’s resistance to flow. Viscosity is commonly measured in centiPoise (cP). One cP is defined as the viscosity of water and all other viscosities are derived from this base. MPa is another common unit with a 1:1 conversion to cP. A product like honey would have a much higher viscosity -around 10,000 cPs- compared to water. As a result, honey would flow much slower out of a tipped glass than water would. The viscosity of a material can be decreased with an increase in temperature in order to better suit an application | 20,000 mPa.s | ||||||||
Electrical Properties | |||||||||
| |||||||||
Dielectric Strength Dielectric Strength Dielectric strength is measured in kV per mm and is calculated by the Breakdown voltage divided by the thickness of the tested material. Those two properties go hand in hand and while Breakdown voltage is always thickness dependent, dielectric strength is a general material property. As an example, the dielectric strength of Polyimide is 236 kV/mm. If we place 1mm of Polyimide between two electrodes, it will act as an insulator until the voltage between the electrodes reaches 236 kV. At this point it will start acting as a good conductor, causing sparks, potential punctures and current flow. | 37.4 kV/mm | ||||||||
Volume Resistivity Volume Resistivity Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface. | 6.3x1014 Ohms⋅cm | ||||||||
Mechanical Properties | |||||||||
| |||||||||
| |||||||||
Thermal Properties | |||||||||
| |||||||||
| |||||||||
Glass Transition Temperature (Tg) Glass Transition Temperature (Tg) The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding. The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs. | 175 °C |