TC-9000T | Clear Optical Molding Compound

Harmonization Code : 3907.30.00.15 |   Epoxide resin, halogen-free
Main features
  • Transparent Filler Technology
  • Anti-blue Decay
  • Low CTE & Low Moisture Absorption

Product Description

TC-9000T is a high-performance optical solid epoxy specifically developed for white decorative and backlight LED encapsulation. This monocomponent epoxy achieves superior adhesion performance and great transmittance. Its stability at high temperature aids towards a good package performance and long life. More important, TC-9000T applies transparent filler technology to achieve low CTE and low moisture absoprtion.  

TC-9000T is developed based on TC-8060 formula, which is able to offer low blue-ray decay for outdoor LED applications and overall great light performance. This anti yellowing white epoxy is very close to competitive solutions such as XX814, XX1000 and XX97. 

Reliability Tests Passed:

  • Thermal cycling, -45°C ~ 100°C * 500 cycles
  • Double 85, 85°C * 85%RH * 168hrs
  • High temperature storage, 150°C * 1000hrs
  • Reflow, 260°C * 10s * 3 times

Other Versions In TC-8060 Series:

To Know More about TC-9000T:

Product Family
TC9000T  

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.

Technical Specifications

General Properties
Appearance
Appearance
Appearance at room temperature.
white, tablet
Filler Content 40~80 %
Refractive index
Refractive index
The refractive index determines how much the path of light is bent, or refracted, when entering a material. It is calculated by taking into account the velocity of light in vacuum compared to the velocity of light in the material.

The refractive index calculation can be affected by the wavelength of light and the temperature of the material. Even though it is usually reported on standard wavelengths it is advised to check the TDS for the precise test parameters.
1.52
Specific Gravity
Specific Gravity
Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume.

For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless.
1.5~2.0
Physical Properties
Spiral Flow @ 175°C 100~200 cm
Mechanical Properties
Hardness
Hardness
Hardness is a dimensionless quantity. There is no direct relationship between measurements in one scale and their equivalent in another scale or another hardness test.
Durometer (Shore D) 88
Flexural Modulus
Flexural Modulus @ 25°C 9000 N/mm2
Flexural Strength
Flexural Strength @ 25°C
Flexural Strength @ 25°C
Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. This is the flexural strength tested at Room Temperature, 25°C
80 N/mm2
Electrical Properties
Visible Light Transmission >10 %
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
45 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
100 ppm/°C
Gel Time
Gel Time
Gel time is the time it takes for a material to reach such a high viscosity (gel like) that it is no longer workable.

It is usually measured for different temperature conditions and even though it does not refer to full cure it is advisable to never move or manipulate the material after it reached its gel time since it can lose its desired end properties.
Gel Time @ 160°C / 320°F 20~60 sec
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
150 °C
Curing Conditions
Curing Schedule
Curing Schedule
Curing schedule is the time and temperature required for a mixed material to fully cure. While this applies to materials that cure with heat, there are also other materials that can be cured with UV.

Even though some materials can cure on ambient temperatures, others will require elevated temperature conditions to properly cure.

There are various curing schedules depending on the material type and application. For heat curing, the most common ones are Snap cure, Low temperature cure, Step cure and Staged cure.

Recommended cure type, schedule, time and temperature can always be found on the Technical data sheets.
Cure Time 3~5 min
Mold Temperature 140~160 °C
Preheat Temperature 40~80 °C
Post Mold Cure
Post Mold Cure @ 150°C / 302°F 4~6 hrs
Transfer Pressure 10~40 kg/cm2
Transfer Time 20~50 s

Additional Information

To meet higher MSL test requirements, clear molding compound is expected to have (1) low moisture absorption; (2) low stress generated; (3) low CTE. Our filler technology could helpmeet these challenges. With the content of filler increasing in TC-9000T, the CTE and water absorption both decrease. Meanwhile, TC-9000T is based on the TC-8060 product platform, TC-9000T remains the superior anti-blue decay property as TC-8060. Worth to be mention, the straight light R-transmittance will also decrease a lot with filler content increase. Thus, we usually keep the filler content in the range of 40~80% based on specific application needs. 

TC-9000T High Temperature Stability

TC-9000T is developed based on TC-8060, thus TC-9000T keeps superior anti-blue decay property as TC-8060. As you can tell from the heat storage test curve below, TC-9000T transmittance decay is lower than 15% under 150°C for 1000hours.

TC-9000T Filler Content Effect 

As the filler content in TC-9000T increases, the CTE decreases and water absorption decrease. With low CTE, the strain during temperature change is also low. The improved moisture resistance ability gives TC-9000T higher chance to pass MSL requirements.

TC9000T Transmittance Decay Performance
TC9000T CTE Data by Filler Content 
 TC-9000T Transmittance Data
TC9000T Water Absorption by Filler Content